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Abstract. A stochastic model to describe surface reaction systems is introduced. The reactions
may include mono- and bimolecular steps (i.e. adsorption, desorption, reaction and diffusion
steps). Furthermore, energetic interactions between the adsorbed particles are allowed. The
temporal evolution of the system is described by master equations using the Markovian behaviour
of these systems. The resulting infinite chain of equations is truncated at a certain level by using
an improved superposition approximation. The equations are solved in a small lattice region
exactly and their solution is connected to continuous functions which represent the behaviour of
the system for large distances. We define a standard model which can be used to model various
surface reaction systems in a unique manner. This gives the possibility for a better and easier
comparison between different models.

1. Introduction

Surface reaction systems are in general not well understood, even today. Due to their
importance in theoretical and applied research, much effort has been undertaken to obtain
more insight. One can use different approaches to get a better understanding. Experimental
observations are certainly of paramount importance. But it turns out that information on the
individual reaction steps is very difficult to obtain and that interpretation of the data is, in
general, not easy. A second possibility is the use of computer simulations. For the so-called
A+A → 0, A+B → 0, A+ 1

2B2 → 0 reaction systems, Monte Carlo and cellular automata
simulations were introduced. Lattices are used to represent the surface. Particles (A and/or
B) can adsorb onto the lattice from a gas phase. Some of these simulations are in good
agreement with some experimental observations [1]. The most prominent systems which
have been studied are the CO oxidation on a Pt catalyst (see e.g. [2, 3]) and the formation
of NH3 [4]. The computer simulations have the disadvantage that the reaction steps should
not be too complicated, because of the large amount of computer time which is needed.
Therefore, purely theoretical approaches are very interesting for the description of these
lattice models. But it has turned out that only very simple systems such as theA + A → 0
reaction can be solved analytically (in one dimension) [5]. More complex systems which
are able to model real systems cannot be solved via purely analytical methods. For this
reason we want to introduce a combined analytical and numerical approach which is also
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able to handle more complex systems, and which takes explicitly structural and energetic
aspects into account.

In order to describe real surface reactions it is necessary to include the aspect of
energetic interactions between the particles, and consequently all processes should depend
on temperature. Methods introduced so far [6–10] are incomplete and tend to contradict
each other. For example, some authors consider parameters as energetically dependent on
the neighbourhood which are treated by other authors as independent of it. Moreover, in
an irreversible model (e.g. setting the desorption rate to zero) an equilibrium state cannot
be obtained. In this case the transition probability for the processes cannot be modelled
with the help of a Gibbs distribution. But information about other distributions is not
available. Thus we conclude that the work introduced so far does not lead to a consistent
and physically reasonable model for surface reactions in the case of energetic interactions.

We want to introduce a systematical approach to describe surface reactions including
energetic interactions. This work is based on a stochastic model introduced in [11]. We will
present the main ideas of the method here. Readers interested in the details are referred to
the paper cited above. This model takes correlations explicitly into account, but it neglects
the aspect of energetic interactions between the adsorbed particles and between a particle
and the metal surface. The sequence of reaction steps is formulated by master equations on
the assumption that they are of the Markovian type. An infinite chain of master equations
for the distribution functions of the state of the surface and of pairs of surface sites (and so
on) arises. This chain of equations cannot be solved analytically. To treat this problem in
practice, this hierarchy is truncated at a certain level. The resulting equations can be solved
numerically exactly in a small region and can be connected to a mean-field solution for
large distances from a reference point. Therefore the model avoids three main difficulties:
(i) the large amount of computer time which is normally needed for the simulations (this
ansatz is about 100 times faster than comparable MC simulations), (ii) the finite (and rather
small) lattice size used in MC simulations and (iii) the loss of structural information which
occurs in simple theoretical models (site mean-field models) which do not take structural
aspects of the adsorbate layer into account. Site mean-field models fail in the prediction of
phase transition points due to long-range correlations. More sophisticated mean-field models
(i.e. pair mean-field models) lead to a better quantitative agreement with MC simulations
[12, 13].

The model [11] has been applied to theA + 1
2B2 → 0 reaction and the results were

compared with computer simulations [14]. The results are in very good agreement with
each other. Disordered surfaces were treated within the stochastic approach in [15]. In the
present paper we want to introduce energetic interactions into the model defined in [11].
We define a standard model in order to compare different surface reaction systems which
are modelled by using this theoretical ansatz. In the absence of energetic interactions, the
model reduces to the previous one of [11].

The paper is structured as follows. In section 2 we introduce the stochastic model. The
i-point probabilities are defined in section 3. The resulting lattice equations which represent
the temporal evolution (master equations) are represented in section 4. The superposition
approximation is discussed in section 5. Section 6 deals with the numerical procedure which
we use to solve the lattice equations. In section 7 the standard model is defined, and in
section 8 an example is discussed which shows the equivalence to a previously introduced
model in the limiting case of no energetic interactions.
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2. The model

2.1. Definitions

We use a lattice with coordination numberz. Each lattice site is given a lattice vectorl.
The state of the sitel is represented by the lattice variableσl which may depend on the state
of the catalyst site (e.g. promoted or not) and on the coverage with a particle. Here we deal
only with the simple case in which all sites are equal and thereforeσ depends only on its
coverage (the other case is studied in [15]). Thereforeσ ∈ {0, A, B, . . .} where 0 represents
a vacant site,A a site which is occupied by anA particle and so on. Sometimes we will
use the abbreviationσl = λ, σ ′

l = λ′, σn = ν andσ ′
n = ν ′. The states of the neighbourhood

(z sites) of sitel are denoted by{σ }zl .

2.2. Monomolecular steps

The simplest processes depend only on one lattice site. Examples are the creation of a
particle (0→ A), the annihilation (A → 0) or the transformation (A → B). These steps
can be described by

σl
p⇒ σ ′

l with p ≡ P̃ (σl → σ ′
l |{σ }zl ) (1)

wherep is the transition rate from stateσl to σ ′
l and{σ }zl represents the set of states of the

z neighbours of sitel. For the square latticez = 4. All these transition rates are listed in
the matrixP̃ . The transition probabilities do not depend on the chosen sitel (i.e. we have
spatial homogeneity) but they depend on the neighbourhood of sitel. This is different from
the model without energetic interactions.

2.3. Bimolecular steps

A more complicated situation arises if the step depends on two lattice sitesl and n.
Examples are reaction processes (A+B → 0+ 0), diffusion processes (A+ 0 → 0+A) or
a pair creation (0+ 0 → B + B), the latter being useful for the description of dissociative
adsorption events. All these processes can be formulated by

σlσn
k⇒ σ ′

l σ
′
n (2a)

k ≡ K̃(σlσn → σ ′
l σ

′
n|{σ }z−1

l ; {σ }z−1
n )/z. (2b)

The neighbourhood in the case of these processes is given by the(z − 1) nearest neighbour
sites of sitel (with the exception of siten) and by the(z − 1) neighbours of siten (with
the exception of sitel). We want to study only such lattices where{σ }z−1

l is not equal to
{σ }z−1

n . This holds for the square but not for the triangular lattice. We have introduced a
factor 1/z in order to simplify the equations which will arise.

3. i-point probabilities

We introduce the probabilitiesρ(i) which depend oni lattice sites. Fori = 1 we have the
simple density of particles on the lattice. For these probabilities the condition∑

σl

ρ(1)(σl) = 1 (3)

holds. We use the abbreviation

Cλ = ρ(1)(σl) with λ = σl (4)
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yielding
∑

λ Cλ = 1.
The two-point probabilitiesρ(2) depend on two states (σl andσm) and on the distance

k = l − m of the lattice sites. For these probabilities the following sum rule holds:∑
σm

ρ(2)(σlσm) = ρ(1)(σl). (5)

The correlation functionsFλµ(l −m), whereλ = σl andµ = σm, are defined with the help
of ρ(2):

ρ(2)(σlσm) = CλCµFλµ(l − m). (6)

In the models discussed here,F depends only on the distancek = l−m. In the asymptotic
case|k| → ∞, the correlations between the particles vanish:

lim
|k|→∞

Fλµ(k) = 1

CλCµ

lim
|k|→∞

ρ(2)(σlσm) = 1. (7)

In order to obtain a physical interpretation of the correlation functions let us define
cµ = CµFµλ(k). It is a mean density at the distancek from a central site which is in
the stateλ. cµ represents structural information about the particle distribution on the lattice.
As a normalization condition we get∑

µ

CµFλµ(k) = 1. (8)

4. Master equations

The master equations are written in the form of an infinite chain of equations for the
many-point probabilities. To this end we have to calculateall one-point densities andall
pair correlation functions. These calculations and the results are presented in detail in the
appendix. One ends up with a system of nonlinear equations for the densities,Cλ, and the
pair correlation functions,Fλµ. The general form of the temporal evolution of the densities
can be written as

dCλ

dt
= Aλ(C, F ) − Bλ(C, F )Cλ. (9)

For the pair correlation functions we obtain

dFλµ

dt
= Aλµ(C, F ) − Bλµ(C, F )Fλµ (10)

whereA(C, F ) andB(C, F ) are simple positive functions (polynomials) of the densitiesC

and the correlation functionsF .

5. The superposition approximation

The temporal evolution equations for the densitiesρ(i) form an infinite hierarchy of
equations. This chain must be truncated to obtain a finite system of nonlinear equations.
There are various possibilities to do this. The simplest model neglects all spatial correlations
between the particles by setting all correlation functions to unity: one obtains a site mean-
field model. Taking correlation functions for nearest neighbours into account, the model is
of a pair mean-field type. We have studied this model in [16] using the Mamada–Takano
approximation [17]. In a model which takes long-range correlations into account, one
uses the idea of the superpositions approximation of Kirkwood [18]. We have studied this
approximation for a model without energetic interactions in [11].
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In this paper we study a more general model which includes energetic interactions
between nearest neighbour particles. In spite of this definition of the interactions (short
range) we observe the appearance of long-range spatial correlations. In contrast to the
model without energetic interactions, high-order densities are essential. For example, the
temporal evolution of the one-point densitiesρ(1) depends onρ(1+z) andρ(2z), wherez is the
coordination number of the lattice. This means that compared to the case without energetic
interactions, where we have only one- and two-point densities, very high point densities
appear. In order to break these densities we use the Mamada–Takano approximation for
terms of typeρ(1+z) and ρ(2z) in the temporal evolution equations for one point densities
(see equations (A9) and (A16)). Terms of the typeρ(2+z) which appear in the temporal
evolution of two-point densities are decomposed into two parts (see equation (A30)): a
term ρ(3) and a cofactor. For the three-point density the Kirkwood approximation is used.
The cofactor is approximated using the idea of Mamada and Takano. This leads to an
expression containing only two-point densities.

The Mamada–Takano and Kirkwood approximations are purely mathematical concepts
which have been very sucessfully used in various models. Both approximations are
mathematically very similar. Therefore we focus our discussion on the Kirkwood
approximation.

In the Kirkwood approximation the three-point probability is expressed as

ρ(3)(σlσnσm) ⇒ CλCνCµFλν(l − n)Fνµ(n − m)Fµλ(m − l). (11)

This approximation fulfils all necessary conditions:
(i) It is a function ofC andF .
(ii) If the lattice sitesl, n, m are far away from each other, their states should be

independent, which means

ρ(3)(σlσnσm) ≈ ρ(1)(σl)ρ
(1)(σn)ρ

(1)(σm) = CλCνCµ.

This holds because of equation (7).
(iii) If two sites are near each other (e.g.l and n) and m is far away, the stateσm

should be independent of the others. This means

ρ(3)(σlσnσm) ≈ ρ(2)(σlσn)ρ
(1)(σm) = CλCνCµFλν(l − n).

The accuracy of the Kirkwood approximation decreases if all three points are near each
other. Nevertheless, this approximation has been very successfully used [19].

We also use an improvement of the Kirkwood approximation which allows us to treat
all correlation functions as independent ones [11]. We do not want to discuss this rather
technical detail in this paper.

6. Method of solution

The main problem in solving the obtained equation system is connected with the solution
of an infinite system of nonlinear differential equations for a chosen type of lattice. To
solve this problem in practice the following approximation is used. A threshold valuem0

is introduced. For|k| < m0 the lattice equations are solved exactly (here we usem0 = 5).
This first area determines several coordination spheres in which the lattice aspect of the
problem is important. In the second area all properties change quasi-continuously with
the distance|k|. Therefore we can use a continuum approximation by introduction of the
coordinatesr = |k| and substitution of the correlation functionF(k) by the radial oneF(r).
By this substitution, the equations transform into nonlinear equations in partial derivatives.
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As the left (or inner) boundary condition (circumference of the circle with radiusm0), the
solution within the first area at|k| = m0 is used. Because of the weakness of the correlation
we can useF(∞) = 1 as the right (or external) boundary condition.

7. Definition of a standard model

In the past several simulation models for surface reaction systems including energetic
interactions have been introduced [6–10]. These approaches are problematic in certain
aspects because they contradict each other in the definition of the transition probabilities.
Furthermore, steps which are considered to be independent of energetic interactions in one
paper show a dependency in another. The main point of critique is that in the case of
an irreversible reaction these models cannot lead to a Gibbs distribution. Therefore it is
necessary and useful to introduce a standard model in order to compare different models in
the future. Moreover, we will systematically use the Gibbs distribution in order to introduce
a temperature. It is then possible to define the transition probabilities in such a way that an
equilibrium state can be reached.

The definition of the transition rates for our stochastic model follows an ansatz of
Kawasaki [20, 21]. We use the abbreviationX for an initial state (σl for mono- andσlσn for
bimolecular steps),Y for a final state (σ ′

l for mono- andσ ′
l σ

′
n for bimolecular steps) andZ for

the states of the neighbourhood ({σ }zl for mono-and ({σ }z−1
l ; {σ }z−1

n ) for bimolecular steps).
If we study the system in which the neighbourhood is fixed we can see a relaxation process
in a very small area. We introduce the normalized probabilityW(X) and the corresponding
ratesK̃(X → Y |Z). For this (reversible) process we write the Markovian master equation

dW(X)

dt
= K̃(Y → X|Z)W(Y ) − K̃(X → Y |Z)W(X). (12)

For t → ∞ we expect to get an equilibrium state

W(X) = Weq(X|Z) = exp(−H(X|Z)/kBT )

×(exp(−H(X|Z)/kBT ) + exp(−H(Y |Z)/kBT ))−1 (13)

whereH(X|Z) is the corresponding energy of the system in the stateX. (For an open
system we must also take the chemical potential into account.)

For the reversible processes (irreversible processes are discussed in section 8 of this
paper) we can define the ratio of the transition rates using equation (12):

K̃(X → Y |Z)/K̃(Y → X|Z) = exp(−δH/kBT ) (14a)

δH = H(Y |Z) − H(X|Z). (14b)

In order to define the rates, we use as a condition of our model asymmetricform for
the rates:

K̃(X → Y |Z) = Q(X|Y )Weq(Y |Z) (15a)

Q(X|Y ) = Q(Y |X) (15b)

whereQ(X|Y ) is a factor which is independent of the neighbourhoodZ. The neighbourhood
is only taken into account byWeq(Y |Z). Normally one writes this in the form [21]

K̃(X → Y |Z) = 1

2τ

[
1 − tanh

(
δH

2kBT

)]
(16)

which is identical to our representation with 1/2τ = Q(X|Y ). The choice of the standard
form (15) offers two advantages. First, the rates are bounded byQ(X|Y ) and second, we
can use the normalizable probabilityWeq(Y |Z).
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In principle the non-symmetric ansatz

K̃(X → Y |Z) = Q(X|Y ) exp(−δH/kBT ) (17a)

K̃(Y → X|Z) = Q(X|Y ) (17b)

can be used, but then one would encounter the problem that the transition rate is not bounded.
Furthermore, steps such as the diffusion should be symmetric which is not possible with
the non-symmetric ansatz.

Let us study the energetic aspect in detail. For the monomolecular steps we obtain

H(X|Z) ≡ H(σl|{σ }zl ) = (ε(σl) − χ(σl; T )) +
z∑

i=1

Eσlσi
(18)

whereEλν is the matrix which contains the interaction energies,ε(λ) is the particle energy
andχ(λ; T ) is the chemical potential which depends on the temperatureT . For vacant sites
(σl = 0), ε(0) = χ(0; T ) = Eλ0 ≡ 0.

In the standard model we obtain for the one-point transition rates (using equation (15))

P̃ (σl → σ ′
l |{σ }zl ) ≡ Q(σl|σ ′

l ) exp(−H(σ ′
l |{σ }zl )/kBT )

×(exp(−H(σl|{σ }zl )/kBT ) + exp(−H(σ ′
l |{σ }zl )/kBT ))−1. (19)

For the bimolecular steps we obtain (analogously to equation (18))

H(σlσn|{σ }z−1
l ; {σ }z−1

n ) = (ε(σl) − χ(σl; T )) + (ε(σn) − χ(σn; T ))

+Eσlσn
+

z−1∑
i=1

Eσlσi
+

z−1∑
j=1

Eσnσj . (20)

For the two-point transition rates we get (using equation (15))

K̃(σlσn → σ ′
l σ

′
n|{σ }z−1

l ; {σ }z−1
n ) = Q(σlσn|σ ′

l σ
′
n)Weq(σ

′
l σ

′
n|{σ }z−1

l ; {σ }z−1
n ). (21)

8. Examples for the standard model

Some examples serve to demonstrate the flexibility of the standard model. We introduce
a model which includes mono- and bimolecular steps as discussed in [14]. The previous
model had no energetic interactions. Applying the model described in this paper to an
empty lattice we must obtain the previous model. This will be shown below.

The monomolecular steps such as the creation of a particleA with the rateP(0 →
A) = pA = pA(T ) and an annihilation processP(A → 0) = kA = kA(T ) are normally
written in the formkA = k0

A exp(−EA/kBT ) with an activation energyEA and a frequency
factor k0

A. In the following we use the abbreviation{0}zl for the empty neighbourhood of
site l. We obtain

H(A|{0}zl ) = ε(A) − χ(A; T ) H(0|{0}zl ) = 0. (22)

From equation (19) follows

P̃ (0 → A|{0}zl ) ≡ Q(A|0)
ω

1 + ω
= pA (23a)

P̃ (A → 0|{0}zl ) ≡ Q(A|0)
1

1 + ω
= kA (23b)

with

ω = exp(−[ε(A) − χ(A; T )]/kBT ). (24)
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Henceω = pA/kA and Q(A|0) = (pA + kA). For the difference [ε(A) − χ(A; T )] the
physical interpretation

ε(A) − χ(A; T ) = kBT ln(kA/pA) = kBT ln(k0
A/pA) − EA (25)

is obtained. The last equality holds forpA = constant. Therefore our model can take into
account the adsorption energy and also the frequency factor.

In our previous model without energetic interactions [14] we have for a bimolecular
step the two-point transition rates̃K(σlσn → σ ′

l σ
′
n). Let us study the processesK(BB →

00) = βB (desorption) andK(00 → BB) = pB (adsorption). In the new model we get for
an empty surface

H(BB|{0}z−1
l ; {0}z−1

n ) = 2(ε(B) − χ(B; T )) + EBB (26a)

H(00|{0}z−1
l ; {0}z−1

n ) = 0. (26b)

The transition rates are given by

K̃(00 → BB|{0}z−1
l ; {0}z−1

n ) = Q(00|BB)
ω

1 + ω
(27a)

K̃(BB → 00|{0}z−1
l ; {0}z−1

n ) = Q(00|BB)
1

1 + ω
(27b)

with

ω = exp(−2[ε(B) − χ(B; T )]/kBT − EBB/kBT ). (28)

We obtain thatω = pB/βB , Q(00|BB) = (pB + βB) and

ε(B) − χ(B; T ) = {kBT ln(βB/pB) − EBB}/2 = {kBT ln(β0
B/pB) − EB − EBB}/2 (29)

for the case thatβB = β0
B exp(−EB/kBT ) andpB = constant.

For a diffusion process on an empty surface we obtain

K̃(A0 → 0A|{0}z−1
l ; {0}z−1

n ) ≡ Q(A0|0A)/2 = D = D0 exp(−Ediff /kBT ) (30)

andQ(A0|0A) = 2D, whereD is the transition rate for this process for the case without
energetic interactions.

This proposed standard model has some important features. If in the case of a reversible
process on an empty surface one of the rates goes to zero, the rate for the case of the occupied
surface (taking interactions with the neighbourhood into account) would also go to zero. In
this limit, the rate for the reverse process would become independent of the neighbourhood.
To show this property, let us discuss an example for the adsorption/desorption process. The
process taking place on an empty surface is defined by equation (23). For an occupied
surface we obtain for the transition rates

P̃ (0 → A|{σ }zl ) = Q(A|0)
w

1 + w
(31a)

P̃ (A → 0|{σ }zl ) = Q(A|0)
1

1 + w
(31b)

with w = vω. v describes the interactions with the neighbourhood and clearly depends
on the values ofEλµ. The role of ω is very interesting. We have already obtained
Q(A|0) = (pA + kA) andω = pA/kA. We discuss the following two cases.

(i) pA → 0, kA = constant. We obtainω → 0, P̃ (0 → A|{σ }zl ) → 0 and
P̃ (A → 0|{σ }zl ) → kA = P̃ (A → 0|{0}zl ).

(ii) kA → 0, pA = constant. We obtainω → ∞, P̃ (0 → A|{σ }zl ) → pA = P̃ (0 →
A|{0}zl ) and P̃ (A → 0|{σ }zl ) → 0.
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We see that if a rate goes to zero, the corresponding rate for the reverse process will be
independent of the neighbourhood. Furthermore, for such an irreversible process (one rate
goes to zero) the Gibbs distribution cannot be used, and we are not able to say anything
about the energetics of the system. Therefore, we must describe irreversible processes
with rates which are independent of the neighbourhood (which means independent ofZ in
equation (14)).

There is another interesting point in the standard model which has to be explained.
Applied to normal reaction systems we always have the reaction stepAB → 00, which is
irreversible and therefore has to be described as independent of the neighbourhood. But
the effective reaction rate depends clearly on the correlation functions, which means that it
depends finally on the neighbourhood, but we are not allowed to write it in a neighbourhood-
dependent form from the beginning.

9. Conclusions

The stochastic ansatz is useful to describe surface reaction systems which include mono-
and bimolecular steps such as adsorption, desorption, diffusion and reaction in the presence
of energetic interactions. The equations of motion are written as master equations for the
one- and two-point probabilities. The appearance of high-order correlation functions in the
equations of motion is avoided by making use of a generalized superposition approximation,
and by suitable averaging procedures which are guided by a correspondence principle.
According to this principle, the equations should reduce to the previously developed model
[11, 14] in the absence of energetic interactions. Because the model takes correlations of
the particles on the lattice into account explicitly, the results are in good agreement with
computer simulations in the absence of energetic interactions. The same is expected to be
the case if they are present.

At a first glance the equations seem to be very complex, but the numerical solution of
the equations is a process which can be done with a computer program.

The model offers several advantages compared to simulations. The theoretical ansatz
needs only a small amount of computing time. Therefore more complex systems can be
studied. Moreover, our models are not restricted to small lattices which are normally used
in computer simulations. This is of particular interest at phase transition points of first and
second order or in the case of strong energetic interactions where large correlations appear.
All these advantages hold for the present model. In the following paper we will apply this
model to a real model of a surface reaction system including energetic interactions.
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Appendix. Equations for the many-point probabilities

A1. Equation of motion for the one-point probabilities

For the one-point probabilities we obtain

dρ(1)(σl)

dt
≡ dCλ

dt
= dCλ

dt

∣∣∣∣
in

− dCλ

dt

∣∣∣∣
out

(A1)
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where the term with the indexin describes the creation of a stateσl and the term with
the indexout the annihilation of a stateσl . The terms of equation (A1) are separated into
mono- and bimolecular steps:

dCλ

dt

∣∣∣∣
in

= dCλ

dt

∣∣∣∣mono

in

+ dCλ

dt

∣∣∣∣bi

in

. (A2)

We define a variableαl,n which is unity for the case thatl andn are nearest neighbour sites
on the lattice and zero otherwise. With this definition we obtain
dCλ

dt

∣∣∣∣mono

in

=
∑
{σ }zl

∑
σ ′

l

P̃ (σ ′
l → σl|{σ }zl )ρ(1+z)(σ ′

l ; {σ }zl ) (A3)

dCλ

dt

∣∣∣∣bi

in

=
∑
n

αl,n

z

∑
{σ }z−1

l

∑
{σ }z−1

n

∑
σ ′

l σ
′
nσn

K̃(σ ′
l σ

′
n → σlσn|{σ }z−1

l ; {σ }z−1
n )

×ρ(2z)(σ ′
l σ

′
n; {σ }z−1

l ; {σ }z−1
n ) (A4)

and

dCλ

dt

∣∣∣∣
out

= dCλ

dt

∣∣∣∣mono

out

+ dCλ

dt

∣∣∣∣bi

out

(A5)

with
dCλ

dt

∣∣∣∣mono

out

=
∑
{σ }zl

∑
σ ′

l

P̃ (σl → σ ′
l |{σ }zl )ρ(1+z)(σl; {σ }zl ) (A6)

dCλ

dt

∣∣∣∣bi

out

=
∑
n

αl,n

z

∑
{σ }z−1

l

∑
{σ }z−1

n

∑
σ ′

l σ
′
nσn

K̃(σlσn → σ ′
l σ

′
n|{σ }z−1

l ; {σ }z−1
n )

×ρ(2z)(σlσn; {σ }z−1
l ; {σ }z−1

n ). (A7)

Here monomolecular steps need(1 + z)-point probabilities and bimolecular steps need
(2 + 2(z − 1) = 2z)-point probabilities for their description.

In principle many different approaches can be used to treat an equation such as (A5)
which we take as an example. We want to use a correspondence principle: in the absence
of energetic interactions this model should be equivalent to the model discussed in [11].
This results in the condition∑

{σ }zl
ρ(1+z)(σl; {σ }zl ) = ρ(1)(σl) (A8)

where we used equation (10) from [11]. In order to avoid the explicit appearance of high-
order correlation functions one uses the Mamada–Takano approximation [17]

ρ(1+z)(σl; {σ }zl ) ⇒ ρ(1)(σl)

z∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)
(A9)

which gives the condition (A8) automatically. For the square lattice withz = 4 we can
rewrite this equation in the form

ρ(1+z)(σl; {σ }zl ) ⇒ Cλ

4∏
i=1

(Cνi
Fλνi

(1)). (A10)

From this follows for the monomolecular steps
dCλ

dt
|mono
out =

∑
σ ′

l

P (σl → σ ′
l )ρ

(1)(σl) (A11)
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which is formally identical to the model without energetic interactions. HereP (which
replacesP̃ ) is defined as the mean value over the nearest neighbourhood

P(σl → σ ′
l ) =

∑
{σ }zl

P̃ (σl → σ ′
l |{σ }zl )

z∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)
. (A12)

We thus do not take into account the explicit configuration of the neighbours, which
is certainly a sensible approximation. By doing this we obtain for the first term in
equation (A5)

dCλ

dt

∣∣∣∣mono

out

=
∑
λ′

P(λ → λ′)Cλ (A13)

where the mean valueP(λ → λ′) is a homogeneous polynomial function of orderz in Cµ

and inFλµ(1).
The monomolecularin term has a very similar form.

dCλ

dt

∣∣∣∣mono

in

=
∑
λ′

P(λ′ → λ)Cλ′ . (A14)

For the bimolecular steps (A7), we proceed in a similar way as follows. Here we use
the sum rule ∑

{σ }z−1
l

∑
{σ }z−1

n

ρ(2z)(σlσn; {σ }z−1
l ; {σ }z−1

n ) = ρ(2)(σlσn). (A15)

With the Mamada–Takano [17] approximation we get

ρ(2z)(σlσn; {σ }z−1
l ; {σ }z−1

n ) ⇒ ρ(2)(σlσn)

z−1∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)

z−1∏
j=1

ρ(2)(σnσj )

ρ(1)(σn)
. (A16)

Using the last expression we obtain

dCλ

dt

∣∣∣∣bi

out

=
∑
n

αl,n

z

∑
σ ′

l σ
′
nσn

K(σlσn → σ ′
l σ

′
n)ρ

(2)(σlσn) (A17)

which is identical to the model without energetic interactions. We have used as a mean
value over the neighbourhood

K(σlσn → σ ′
l σ

′
n) =

∑
{σ }z−1

l

∑
{σ }z−1

n

K̃(σlσn → σ ′
l σ

′
n|{σ }z−1

l ; {σ }z−1
n )

×
z−1∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)

z−1∏
j=1

ρ(2)(σnσj )

ρ(1)(σn)
. (A18)

We can rewrite this result in the form

dCλ

dt

∣∣∣∣bi

out

=
∑
λ′ν ′ν

K(λν → λ′ν ′)CλCνFλν(1). (A19)

Here the effective transition rateK(λν → λ′ν ′) is a function of the densityCµ and the pair
correlation functionsFλµ(1) andFνµ(1).

For thein term of the bimolecular step we obtain

dCλ

dt

∣∣∣∣bi

in

=
∑
λ′ν ′ν

K(λ′ν ′ → λν)Cλ′Cν ′Fλ′ν ′(1). (A20)
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A2. Equation of motion for the two-point probabilities

We turn to the processes which take place on two different lattice sitesl and m. The
following processes are possible.

(1) l andm are not nearest neighbours on the lattice.
(a) The stateσl can be created or annihilated independently ofm. Only the

neighbourhood ofl is important.
(b) The stateσm can be created or annihilated independently ofl. Only the

neighbourhood ofm is important.
(2) If l andm are nearest neighbours on the lattice, additional terms must be taken into

account which represent the bimolecular steps.
We want to introduce a diagrammatic description for these processes:

dρ(2)(σlσm)

dt
= •—–◦

l m
+ ◦—–•

l m
+ αl,m{••}. (A21)

On the site (•) a process takes place. The symbol (◦) means that this site plays no role in
the determination of the state of the other site. Therefore the first two terms correspond to
the cases (1a) and (1b) and the third term represents the bimolecular step forl andm being
nearest neighbours. The diagrams of type (1a) and (1b) are of the form

•—–◦
l m

=
( •in—–◦

l m
− •out—–◦

l m

)
. (A22)

The first term on the right-hand side represents all processes which create the stateσl . The
difference from equation (A1) lies in the additional condition that the sitem is in the state
σm. Therefore we can write (compare equations (A6), (A7))

dρ(2)(σlσm)

dt

∣∣∣∣out

l

= dρ(2)(σlσm)

dt

∣∣∣∣mono,out

l

+ dρ(2)(σlσm)

dt

∣∣∣∣bi,out

l

(A23)

with

dρ(2)(σlσm)

dt

∣∣∣∣mono,out

l

=
∑
{σ }zl

∑
σ ′

l

P̃ (σl → σ ′
l |{σ }zl )ρ(2+z)(σlσm; {σ }zl ) (A24)

dρ(2)(σlσm)

dt

∣∣∣∣bi,out

l

=
∑
n

αl,n

z

∑
{σ }z−1

l

∑
{σ }z−1

n

∑
σ ′

l σ
′
nσn

K̃(σlσn → σ ′
l σ

′
n|{σ }z−1

l ; {σ }z−1
n )

×ρ(2z+1)(σlσnσm; {σ }z−1
l ; {σ }z−1

n ). (A25)

This equation is only valid for|l − m| > 1. The corresponding case wherem and l
are nearest neighbours will be treated below. Let us first discuss the monomolecular step
in the case|l − m| > 1. Using equation (A10) we obtain

ρ(2+z)(σlσm; {σ }zl ) ⇒ ρ(2)(σlσm)

z∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)
. (A26)

From this equation follows

d[CλCµFλµ(l − m)]

dt

∣∣∣∣mono,out

l

= dρ(2)(σlσm)

dt

∣∣∣∣mono,out

l

=
∑
λ′

P(λ → λ′)CλCµFλµ(l − m).

(A27)

For thein term a similar expression can be derived in the same way.
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We have still to treat the terms where a process on sitel occurs withoutm being
affected, butl and m are nearest neighbours. For|l − m| = 1 (nearest neighbours) we
must change the expression forρ to

ρ(1+z)(σlσm; {σ }z−1
l )

and

ρ(2z)(σlσnσm; {σ }z−2
l ; {σ }z−1

n )

respectively. Again we use equation (A9). But now we get a non-complete mean value
because one site must be in the stateσm. Therefore we introduce the definition

P(σl → σ ′
l |σm) =

∑
{σ }z−1

l

P̃ (σl → σ ′
l |{σ }zl )

z−1∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)

{σ }zl = {σ }z−1
l , σm.

(A28)

For the nearest neighbours follows

d[CλCµFλµ(1)]

dt
|mono,out
l =

∑
λ′

P(λ → λ′|µ)CλCµFλµ(1). (A29)

If no energetic interactions are presentP(λ → λ′|µ) reduces toP(λ → λ′). The in
term is analogous.

For the true bimolecular steps (the triple(lmn)) we make the ansatz

ρ(2z+1)(σlσnσm; {σ }z−1
l ; {σ }z−1

n ) ⇒ ρ(3)(σlσnσm)

z−1∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)

z−1∏
j=1

ρ(2)(σnσj )

ρ(1)(σn)
. (A30)

Let l andn be nearest neighbours in this triple on which the bimolecular step takes place.
We must distinguish between the two cases in whichm is or is not a nearest neighbour of
site l. Using this expression we get for the case thatl andm are not nearest neighbours

d[CλCµFλµ(l − m)]

dt

∣∣∣∣bi,out

l

=
∑
n

αl,n

z

∑
σ ′

l σ
′
nσn

K(σlσn → σ ′
l σ

′
n)ρ

(3)(σlσnσm). (A31)

Otherwise we get (form 6= n)

d[CλCµFλµ(1)]

dt

∣∣∣∣bi,out

l

=
∑
n

αl,n

z

∑
σ ′

l σ
′
nσn

K(σlσn → σ ′
l σ

′
n|{σm}l)ρ(3)(σlσnσm) (A32)

where

K(σlσn → σ ′
l σ

′
n|{σm}l) =

∑
{σ }z−2

l

∑
{σ }z−1

n

K̃(σlσn → σ ′
l σ

′
n|{σ }z−1

l ; {σ }z−1
n )

×
z−2∏
i=1

ρ(2)(σlσi)

ρ(1)(σl)

z−1∏
j=1

ρ(2)(σnσj )

ρ(1)(σn)
(A33)

and{σm}l means that the state of one neighbour of sitel is fixed in the stateσm.
Therefore we can write for theout terms of the bimolecular steps of equation (A21) (in

the notation given there)

{••}out = 1

z

∑
{σ }z−1

l

∑
{σ }z−1

m

∑
σ ′

l σ
′
m

K̃(σlσm → σ ′
l σ

′
m|{σ }z−1

l ; {σ }z−1
m )ρ(2z)(σlσm; {σ }z−1

l ; {σ }z−1
m ).

(A34)
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The approximation (A16) simplifies the 2z-point probabilities. Thein terms can be obtained
in an analogous manner to theout terms.

Finally we get

αl,m{••} = αl,m

z

∑
λ′µ′

K(λ′µ′ → λµ)Cλ′Cµ′Fλ′µ′(1) − αl,m

z

∑
λ′µ′

K(λµ → λ′µ′)CλCµFλµ(1).

(A35)
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